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The stability of solutions of Vakhnenko’s equation 

E J Parkes 
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Abstract. Vakhnenko’s equation has two families of travelling wave  solutio^. The method of 
Rowlands and lnfeid is used to investigate whether these solutions are stable U) long wavelength 
pemrbations of small amplitude. The methcd predicts stability for both families of solutions 
Some comments on the validity of the method are given. 

1. Jntroduction 

In a recent paper [I] Vakhnenko described the physical occurrence of the nonlinear evolution 
equation 

a a  a a,( + U a,)u + U = 0 

(hereafter referred to as Vakhnenko’s equation). He derived two families of travelling wave 
solutions of (1.1) corresponding to propagation in the positive and negative n directions 
respectively. It is of interest to investigate the stability of these solutions. A possible 
approach is to use the method devised by Rowlands and Infeld (see [2, chapter 31 and 
references therein). Their method is resmcted to long wavelength perturbations of small 
amplitude. It has been applied successfully to a variety of generic nonlinear evolution 
equations (see [3] for example) and specific physical systems (see [4] for example). A 
particularly informative description of the method is given in [5] in the context of the 
Zakharov-Kuznetsov equation. Recently some criticism was levelled at the work in [5] 
by Das er a1 161; however, after a detailed reinvestigation of the problem, Das et ol [61 
vindicated the method used in [51. 

The purpose of the present paper is to attempt to apply the Rowlands and Meld method 
to Vakhnenko’s equation. We shall find that the method appears to work successfully. 
However there are some doubts as to the validity of the analysis for the family of solutions 
that correspond to propagation in the positive x direction. 

In section 2 we outline briefly the derivation of, and comment upon, the travelling 
wave solutions of (1 .1 ) .  In section 3 we obtain the nonlinear dispersion relation for the 
perturbations to the solutions in section 2. In section 4 we examine the validity of the 
analysis in section 3 and present our conclusions. 

2. Travelling wave solutions 

In this section we recover Vakhnenko’s travelling wave solutions of (1.1) and establish our 
notation, which is slightly different from that used by Vakhnenko. First we note that there 
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are no stationary periodic solutions of (1.1) of the form U = U@). That being the case it is 
convenient to introduce a new dependent variable z and new independent variables q and 
1; defined by 

q = (x - ut)/lul''* z = (U - U)/IUI r = tlul1p 

where U is a non-zero constant. Then (1.1) becomes 

zqr + ( Z Z J ,  + z + c = 0 (2.1 ) 

where c = -+1 corresponding to U 2 0. We now seek solutions of (2.1) of the form 
z = zo(q), so that zo satisfies 

(zozo,), + 20 + c = 0. (2.2) 

After one integration (2.2) gives 

~(zozo,)2 =WO) (2.3) 

where 

;F(zo) = -123 3 0  - 2 &-zz o + LA 6 - -?. 3 ( 0 - ~ 1 ) ( ~ 0 - ~ 2 ) ( ~ 0 - ~ 3 ) ~  z 

A is a constant and for periodic soIutions 21. 22 and 23 are real constants such that 
ZI < zz < 20 < 23. On using results 236.00 and 236.01 of [7]. we may integrate (2.3) 
to obtain 

where 

F(qo,m) and E(q,m) are incomplete elliptic integrals of the first and second kind 
respectively. We have chosen the constant of integration in (2.4) to be zero so that zo = 23 

at q = 0. The relations (2.4) and (2.5) (cf ( 7 ~ )  and (76) of [I]) give the required solution 
in parametric form, with zo and q as functions of the parameter q. 

An alternative route to the solution is to follow the procedure described in [SI. We 
introduce a new independent variable < defined by 

so that (2.3) becomes 

(2.7) 

By means of result 236.00 of [7], (2.7) may be integrated to give p< = F ( q ,  m), where 
p2 = (23 - 21)/6. Thus, on noting'that sinq = sn(p<[m), where sn is a Jacobian elliptic 
function, we have 

1 2  z z e  = F(20). 

zo = z3 - (23 - zz)sn2(p<1m). (2.8) 
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With result 310.02 of 171, (2.6) and (2.8) give 

II = z i t  -k ~ E ( P F )  (2.9) 

where E ( p 0  = E(am p t .  m). Relations (2.8) and (2.9) are equivalent to (2.5) and (2.4) 
respectively and give the solution in parametric form with zo and q in terms of the parameter 
t. 

We define the wavelength A of the solution as the amount by which q increases when 
(p increases by k; from (2.4) we obtain 

where K(m) and E(m) are complete elliptic~~integrals of the first and second kind 
respectively. 

For c = 1 (i.e. U > O), there are periodic solutions for 0 c A < 1 with A < 0, 
22 E (-1.0) and z3 E (0.0.5). A = 1 gives the solitary wave limit 

U = ?jusech2(</2) q = -t + 3tanh(</2). 

The periodic and solitary waves have a loop-like structure as illustrated in figure 1 of [l]. 
For c = , -1 (i.e. U < O), there are periodic waves for -1 e A < 0 with A z 0, 

zz E (0, 1) and 23 E (1, lS), but no solitary wave solutions. When A = 0 and A = 6 the 
periodic wave solution simplifies to 

u(q)/lvl = - i ' 7 2 +  ; - 3 < IJ 4 3 U(V + 6) = u(v) .  (2.10) 

The periodic waves are illustiated in figure 2 of [I]. 

3. The nonlinear dispersion relation for the perturbations 

We assume a perturbed solution of (2.1) in the form 

2 = zoh) + @IWq) expKkq - or)]+ cc) (3.1) 

where p is a small positive constant characterizing the amplitude of the perturbation, Sz(q) 
is periodic with period A, k is a real constant, o is a constant (possibly complex), and CC 
denotes the complex conjugate of the preceding terms. Substitution of (3.1) into (2.1) and 
linearization with respect to /I yields 

L%z= f (3.2) 

where 
~ ~ 

M r  = ( Z O S Z ) , ,  + 62 

f = (-ok + k2zo)6z + i[wSz, - 2k(zo~z) , ] .  
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As (2.2) implies that Czo7 = 0, we may deduce that, for (3.2) to have periodic solutions, 
the condition (zozon f )  = 0 must be satisfied; the averaging operation (.) on an arbitrary 
function h(q)  is defined by 

where Fp denotes Hadamard's finite part (see [9, section 1.41). 
It is convenient to introduce the definitions 

(3.3) 

and 

a" = (z,"-'). (3.4) 

Clearly ai = 1 and, with (2.2), a2 = -c. Formally the solution of (3.2) is 

6 2  = zo7@ 13.5) 

where 

and D is a constant. As 6z appears on the right-hand side of (3.5) via f. we solve (3.5) 
iteratively by assuming that k is small in comparison with k / h  (so that the perturbations 
in (3.1) have long wavelength) and introduce the expansions 

Sz = 6% + k6zl f. .. o = kOi + k2% +.... 
Thus f may be expressed in the form 

f = k f i + k 2 f 2 + . . .  

where the f, satisfy 

(zozos f , )  = 0 n = I ,  2, . . . . (3.6) 

At zeroth order (3.2) is CGzo = 0 with solution 620 = zo7@o, where. 

607 = Do/(zozo7~2 (3.7) 

and DO is a constant. Integration of (3.7) over a wavelength gives DoBo = 0 and so DO = 0. 
It follows that 

620 = zos. 

At first order (3.2) is CSz, = f i ,  where, with use of (3.8) 

f i  = iIwoo0 - ~ ( ~ O Z O ~ ) ~ ~ ,  
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On making use of (2.2) we find that (3.6) with n = 1 is satisfied identically and that (3.5) 
gives 

621 = Z O V h  (3.9) 

where 

@Is = 101 + io&(zOz& + $2; + czg) - ~ ( Z ~ Z ~ ~ ~ ~ I / ( Z O Z O ~ ) ~  

and DI is a constant. Integration of (3.10) over a wavelength gives 

(3.10) 

(3.11) 

At second order (3.6) with n = 2 gives 

(3.12) 2 2 ( ( w o n )  ) - wi(zozon) - iw(($zi + czo)hn) - i ( (zozoV)2~~,)  = o 
where we have used (2.2) and (3.9). On substituting (3.10) into (3.12) we find that 

~ ~ ( ~ C + C & + C B ~ + ~ S ~ ) - ~ D ~ I W ~ ( C B ~ + ~ B ~ ) + I I = O  2 

with DI given by (3.11). Hence we obtain the main result of this seaion, namely the 
nonlinear dispersion relation for the perturbations~ 

ro + ~ r l w l +  rzw: = 0 

, 

(3.13) 

where the coefficients ro, rl and rz involve f i n  (n = 0, . . . ,4) and Q. Now multiply (2.2) 
and (2.3) by z;-’/z& and integrate over a wavelength to obtain 

nan-l = -cB. - Bn+l (3.14) 

and 

U ~ + I  = ABn/3 - c B ~ + z  - 2Bn+3/3 (3.15) 

respectively; the five equations obtained from (3.14) with n = 0, . . . , 3  and (3.15) with 
n = 0 are easily solved to give f i n  (n = 0, . . . ,4) in terms of ao. Use of these results in 
(3.13) gives 

ro = 1 

Finally, use of results 236.16, 310.00 and 310.02 of 171 in (3.4) gives 

~ rl = -a0 r2 = ai/4 + c ( l +  c ~ O ) ~ / ~ ( A  - c3). (3.16) 

ao = [ZI + (23 - z ~ ) E ( m ) / ~ ( m ) l - ~ .  

(The Bn may be calculated directly from (3.3) by finite part integration; this provides a 
useful check on the above calculations.) 
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4. Conclusions 

Let us consider the consequences of the dispersion relation (3.13). It has real roots if 
r: > 4ror~. From (3.16) this condition is simply c(c? - A) 0; this is satisfied for both 
of the families of travelling wave solutions discussed in section 2. Hence 01 is real and 
we conctude that both families of waves are stable to long wavelength perturbations. (The 
Rowlands and Infeld method makes no predictions for short wavelength perturbations.) The 
roots of the dispersion relation for c = 1 (i.e. U > 0) and c = -1 (i.e. U -= 0) are displayed 
in figures 1 and 2, respectively. 

0 . 5 .  

W E  0 

- 0 . 5 .  

I -  

- 

0 0.25 0 . 5  ~~ 0 . 7 5  -1 

A 

Figure 1. The roots of the nonlinear dispersion relation (3.13) for c F 1 (i.e. v > 0). 
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Before accepting this conclusion regarding stability, we review the assumptions and 
calculations leading to the dispersion relation (3.13). 

For the family of travel!ing waves with U > 0 and 0 < A < 1, the ‘small’ perturbation 
given by (3.1) with (3.8) and (3.9) becomes infinite at points on the loop-like solutions 
z&) where the slope is infinite. Thus, at these points, the usual linearization criterion, 
namely that ISz l / l z l  is bounded, fails and the derivation of (3.2) is invalid. However the 
Rowlands and Infeld method is based on average behaviour over a wavelength so that a more 
appropriate criterion would seem to be the boundedness of (l6zl)/(lz~). This is satisfied and 
so, in this sense, the Rowlands and Infeld stability theory is valid. 

For the family of periodic travelling waves with U < 0 and -1 < A < 0, there are 
no such problems and the Rowlands and Infeld method is certainty valid. For the periodic 
wave (2.10) for which A = 0, it can be seen that ZO,, is undefined at the points = 3 & 6n, 
where n is an integer. In view of (3.8) and (3.9) we deduce that the perturbation given by 
(3.1) is also undefined at these points. However, it seems reasonable to assume that the 
wave (2.10) is stable since it is obtained straightforwardly by applying the limiting process 
A -+ 0 (equivalent to m -+ 1) to (2.8) and (2.9). 

A useful check on the calculations leading to figure 2 is to follow the procedure described 
by Ziemkiewicz et al [lo] as follows. Consider the weak linear limit in which zo = 1 and 
Sz is constant in (3.1). In this case substitution of (3.1) into (2.1) and linearization gives 
the linear dispersion relation o = k - k - l .  The group velocity V, for which o = 0, namely 
V, = 2, should coincide with the linear limit of 01 from the fully nonlinear calculation, 
that is the value of 01 when A = -1. This is clearly the case in figure 2. Note that for 
U > 0 the weak linear limit is not a sinusoidal wave and so the procedure just described is 
not applicable to the curve in figure 1. 

Acknowledgments 

The author thanks a referee for perceptive comments and Dr Brian D u e  for useful 
suggestions. 

References 

[I] Vakhnenko V A 1992 J .  Phys. A: Mufh. Gen. 25 4181-7 
[Z] lnfeld E and Rowlands G 1990 Nonlinear Waves, Solifom und Chaos (Cambridge: Cambridge University 

PI Murawski K and Storer R G 1989 Wave Morion 11 309-25 
[41 lnfeld E, Ziemkiewicz J and Rowlands G 1987 Phys. Fluids 30 2 3 3 M  
[51 Infeld E 1985 1. P l a “  Physics 33 171-82 
[6] Das K P. Sluijter F W and Verheest F 1992 Physica Scripfa 45 35863 
U] Byrd P F and Friedman M D 1971 Handbook of Elliplic Integrals for Engineers and ScienlisIs (Berlin: 

[SI Takahashi D and Satsuma J 1988 J .  Phys. Soc. Japan 57 417-21 
191 Zemanian A H 1965 Disrriburion Theory and Trun@orm Analysis (New York McGraw-Hill) 

(101 Ziemkiewicz J. lnfeld E and Rowlands G 1981 Acta Phys. Pol. A 60 457-72 

Reus) 

Springer) 


